Learning Curved Manifolds The World is not always Flat or Learning Curved Manifolds

نویسندگان

  • Evgeni Begelfor
  • Michael Werman
چکیده

Manifold learning and finding low-dimensional structure in data is an important task. Many algorithms for this purpose embed data in Euclidean space, an approach which is destined to fail on non-flat data. This paper presents a non-iterative algebraic method for embedding the data into hyperbolic and spherical spaces. We argue that these spaces are often better than Euclidean space in capturing the geometry of the data. The approach can be used to extend algorithms such as ISOMAP and SDE to the curved case. We also demonstrate the utility of these embeddings by showing how some of the standard clustering algorithms translate to these curved manifolds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A scaled Bregman theorem with applications

Bregman divergences play a central role in the design and analysis of a range of machine learning algorithms through a handful of popular theorems. We present a new theorem which shows that “Bregman distortions” (employing a potentially non-convex generator) may be exactly re-written as a scaled Bregman divergence computed over transformed data. This property can be viewed from the standpoints ...

متن کامل

بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد

Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...

متن کامل

On cohomogeneity one nonsimply connected 7-manifolds of constant positive curvature

In this paper, we give a classification of non simply connected seven dimensional Reimannian manifolds of constant positive curvature which admit irreducible cohomogeneity-one actions. We characterize the acting groups and describe the orbits. The first and second homo-topy groups of the orbits have been presented as well.

متن کامل

Robust Multiple Manifolds Structure Learning

We present a robust multiple manifolds structure learning (RMMSL) scheme to robustly estimate data structures under the multiple low intrinsic dimensional manifolds assumption. In the local learning stage, RMMSL efficiently estimates local tangent space by weighted low-rank matrix factorization. In the global learning stage, we propose a robust manifold clustering method based on local structur...

متن کامل

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006